\(\int \frac {\sqrt {1-c^2 x^2}}{x^4 (a+b \arcsin (c x))^2} \, dx\) [388]

   Optimal result
   Rubi [N/A]
   Mathematica [N/A]
   Maple [N/A] (verified)
   Fricas [N/A]
   Sympy [N/A]
   Maxima [N/A]
   Giac [N/A]
   Mupad [N/A]

Optimal result

Integrand size = 28, antiderivative size = 28 \[ \int \frac {\sqrt {1-c^2 x^2}}{x^4 (a+b \arcsin (c x))^2} \, dx=\text {Int}\left (\frac {\sqrt {1-c^2 x^2}}{x^4 (a+b \arcsin (c x))^2},x\right ) \]

[Out]

Unintegrable((-c^2*x^2+1)^(1/2)/x^4/(a+b*arcsin(c*x))^2,x)

Rubi [N/A]

Not integrable

Time = 0.08 (sec) , antiderivative size = 28, normalized size of antiderivative = 1.00, number of steps used = 0, number of rules used = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \[ \int \frac {\sqrt {1-c^2 x^2}}{x^4 (a+b \arcsin (c x))^2} \, dx=\int \frac {\sqrt {1-c^2 x^2}}{x^4 (a+b \arcsin (c x))^2} \, dx \]

[In]

Int[Sqrt[1 - c^2*x^2]/(x^4*(a + b*ArcSin[c*x])^2),x]

[Out]

Defer[Int][Sqrt[1 - c^2*x^2]/(x^4*(a + b*ArcSin[c*x])^2), x]

Rubi steps \begin{align*} \text {integral}& = \int \frac {\sqrt {1-c^2 x^2}}{x^4 (a+b \arcsin (c x))^2} \, dx \\ \end{align*}

Mathematica [N/A]

Not integrable

Time = 3.92 (sec) , antiderivative size = 30, normalized size of antiderivative = 1.07 \[ \int \frac {\sqrt {1-c^2 x^2}}{x^4 (a+b \arcsin (c x))^2} \, dx=\int \frac {\sqrt {1-c^2 x^2}}{x^4 (a+b \arcsin (c x))^2} \, dx \]

[In]

Integrate[Sqrt[1 - c^2*x^2]/(x^4*(a + b*ArcSin[c*x])^2),x]

[Out]

Integrate[Sqrt[1 - c^2*x^2]/(x^4*(a + b*ArcSin[c*x])^2), x]

Maple [N/A] (verified)

Not integrable

Time = 1.27 (sec) , antiderivative size = 26, normalized size of antiderivative = 0.93

\[\int \frac {\sqrt {-c^{2} x^{2}+1}}{x^{4} \left (a +b \arcsin \left (c x \right )\right )^{2}}d x\]

[In]

int((-c^2*x^2+1)^(1/2)/x^4/(a+b*arcsin(c*x))^2,x)

[Out]

int((-c^2*x^2+1)^(1/2)/x^4/(a+b*arcsin(c*x))^2,x)

Fricas [N/A]

Not integrable

Time = 0.24 (sec) , antiderivative size = 49, normalized size of antiderivative = 1.75 \[ \int \frac {\sqrt {1-c^2 x^2}}{x^4 (a+b \arcsin (c x))^2} \, dx=\int { \frac {\sqrt {-c^{2} x^{2} + 1}}{{\left (b \arcsin \left (c x\right ) + a\right )}^{2} x^{4}} \,d x } \]

[In]

integrate((-c^2*x^2+1)^(1/2)/x^4/(a+b*arcsin(c*x))^2,x, algorithm="fricas")

[Out]

integral(sqrt(-c^2*x^2 + 1)/(b^2*x^4*arcsin(c*x)^2 + 2*a*b*x^4*arcsin(c*x) + a^2*x^4), x)

Sympy [N/A]

Not integrable

Time = 1.41 (sec) , antiderivative size = 29, normalized size of antiderivative = 1.04 \[ \int \frac {\sqrt {1-c^2 x^2}}{x^4 (a+b \arcsin (c x))^2} \, dx=\int \frac {\sqrt {- \left (c x - 1\right ) \left (c x + 1\right )}}{x^{4} \left (a + b \operatorname {asin}{\left (c x \right )}\right )^{2}}\, dx \]

[In]

integrate((-c**2*x**2+1)**(1/2)/x**4/(a+b*asin(c*x))**2,x)

[Out]

Integral(sqrt(-(c*x - 1)*(c*x + 1))/(x**4*(a + b*asin(c*x))**2), x)

Maxima [N/A]

Not integrable

Time = 0.82 (sec) , antiderivative size = 136, normalized size of antiderivative = 4.86 \[ \int \frac {\sqrt {1-c^2 x^2}}{x^4 (a+b \arcsin (c x))^2} \, dx=\int { \frac {\sqrt {-c^{2} x^{2} + 1}}{{\left (b \arcsin \left (c x\right ) + a\right )}^{2} x^{4}} \,d x } \]

[In]

integrate((-c^2*x^2+1)^(1/2)/x^4/(a+b*arcsin(c*x))^2,x, algorithm="maxima")

[Out]

(c^2*x^2 + (b^2*c*x^4*arctan2(c*x, sqrt(c*x + 1)*sqrt(-c*x + 1)) + a*b*c*x^4)*integrate(2*(c^2*x^2 - 2)/(b^2*c
*x^5*arctan2(c*x, sqrt(c*x + 1)*sqrt(-c*x + 1)) + a*b*c*x^5), x) - 1)/(b^2*c*x^4*arctan2(c*x, sqrt(c*x + 1)*sq
rt(-c*x + 1)) + a*b*c*x^4)

Giac [N/A]

Not integrable

Time = 2.04 (sec) , antiderivative size = 28, normalized size of antiderivative = 1.00 \[ \int \frac {\sqrt {1-c^2 x^2}}{x^4 (a+b \arcsin (c x))^2} \, dx=\int { \frac {\sqrt {-c^{2} x^{2} + 1}}{{\left (b \arcsin \left (c x\right ) + a\right )}^{2} x^{4}} \,d x } \]

[In]

integrate((-c^2*x^2+1)^(1/2)/x^4/(a+b*arcsin(c*x))^2,x, algorithm="giac")

[Out]

integrate(sqrt(-c^2*x^2 + 1)/((b*arcsin(c*x) + a)^2*x^4), x)

Mupad [N/A]

Not integrable

Time = 0.16 (sec) , antiderivative size = 28, normalized size of antiderivative = 1.00 \[ \int \frac {\sqrt {1-c^2 x^2}}{x^4 (a+b \arcsin (c x))^2} \, dx=\int \frac {\sqrt {1-c^2\,x^2}}{x^4\,{\left (a+b\,\mathrm {asin}\left (c\,x\right )\right )}^2} \,d x \]

[In]

int((1 - c^2*x^2)^(1/2)/(x^4*(a + b*asin(c*x))^2),x)

[Out]

int((1 - c^2*x^2)^(1/2)/(x^4*(a + b*asin(c*x))^2), x)